The accurate determination of volatile fatty acids (VFAs) and total alkalinity (TAC, mostly carried by bicarbonate ions) is critical for operating anaerobic digesters. The FOS/TAC titration method developed by Nordmann is widely used due to its simplicity and affordability. This method has known limitations in dosing VFAs and TAC, since the presence of one interferes with the determination of the other, especially at higher VFA or bicarbonate concentrations. This study builds upon our prior research in 2021 by integrating the influence of phosphate (H2PO4 −/HPO4 2−) into numerical models correcting FOS/TAC titration results. A Scilab-based program was used to assess the impact of phosphate on titration results, revealing significant biases at lower concentrations. A revised multivariate regression formula was developed, incorporating phosphate effects, and demonstrating superior accuracy. The mean absolute percentage errors (MAPE) for TAC and VFA estimation were reduced to less than 0.3%. The model maintains compatibility with standard Nordmann’s titration protocols and equipment while significantly improving reliability. These findings highlight the necessity of considering phosphate interference in FOS/TAC titration, particularly in AD systems with variable buffering conditions. The proposed correction model enhances process monitoring and control, providing a more robust tool for both research and industrial practice in anaerobic digestion.
Loading....